Перевод: со всех языков на все языки

со всех языков на все языки

process-camera photography

  • 1 process-camera photography

    English-Russian big polytechnic dictionary > process-camera photography

  • 2 process-camera photography

    Большой англо-русский и русско-английский словарь > process-camera photography

  • 3 process-camera photography

    Англо-русский словарь технических терминов > process-camera photography

  • 4 process-camera photography

    Универсальный англо-русский словарь > process-camera photography

  • 5 process-camera photography

    Англо-русский словарь по полиграфии и издательскому делу > process-camera photography

  • 6 photography

    2) фотосъёмка, фотографирование
    - additive color photography -
    advertising photography
    -
    aerial photography from a kite
    -
    aerial photography
    -
    aerospace photography
    -
    air-to-air photography
    -
    amateur photography
    -
    animated photography
    -
    applied photography
    -
    art photography
    -
    astronomical photography
    -
    ballistic photography
    -
    black-and-white photography
    -
    borehole photography
    -
    bubble chamber photography
    -
    celestial photography
    -
    cine photography
    -
    close-up photography
    -
    color photography
    -
    composite photography
    -
    daylight photography
    -
    deep-ocean photography
    -
    direct photography
    -
    earth-based lunar photography
    -
    electronic photography
    -
    electrostatic photography
    -
    endoscopic photography
    -
    engineering photography
    -
    exoelectron photography
    -
    fade-in photography
    -
    fade-out photography
    -
    flash photography
    -
    frame-by-frame photography
    -
    half-tone photography
    -
    high-resolution photography
    -
    high-speed photography
    -
    identification photography
    -
    imbibition color photography
    -
    industrial photography
    -
    infrared photography
    -
    instantaneous photography
    -
    integral photography
    -
    interference color photography
    -
    laser photography
    -
    lensless photography
    -
    long-distance photography
    -
    lunar photography
    -
    metric photography
    -
    missile photography
    -
    motion picture photography
    -
    multispectral photography
    -
    newsreel photography
    -
    nuclear track photography
    -
    oscilloscope photography
    -
    panoramic photography
    -
    process-camera photography
    -
    professional photography
    -
    reconnaissance photography
    -
    reproduction photography
    -
    satellite-borne photography
    -
    schlieren photography
    -
    screen photography
    -
    short distance photography
    -
    silver photography
    -
    slow-motion photography
    -
    space photography
    -
    spark photography
    -
    speckle photography
    -
    spectral zonal photography
    -
    squeezed photography
    -
    stellar photography
    -
    stereoscopic photography
    -
    still photography
    -
    stroboscopic photography
    -
    studio photography
    -
    subtractive color photography
    -
    technical photography
    -
    three-color photography
    -
    three-dimensional photography
    -
    time-lapse photography
    -
    traveling-matte photography
    -
    two-color photography
    -
    unconventional photography
    -
    underwater photography
    -
    X-ray photography

    Англо-русский словарь технических терминов > photography

  • 7 photography

    Англо-русский словарь по полиграфии и издательскому делу > photography

  • 8 process

    1 noun ['prəʊses]
    (a) (series of events, operation) processus m;
    the ageing process le processus de vieillissement;
    the democratic process le processus démocratique;
    the peace process le processus de paix;
    by a process of elimination en procédant par élimination;
    to be in the process of doing sth être en train de faire qch;
    in the process of speaking to him, I found out that his wife was dead c'est en lui parlant que j'ai appris que sa femme était morte;
    they're in the process of getting a divorce ils sont en instance de divorce;
    the building is in the process of being repaired le bâtiment est en cours de réparation;
    in the process of time avec le temps, à la longue;
    he lost most of his friends in the process il a perdu presque tous ses amis en faisant cela;
    but you ruined the carpet in the process mais tu as abîmé la moquette par la même occasion;
    during the process of dismantling au cours du démontage;
    the work is in process le travail est en cours
    (b) Technology (industrial) procédé m; (chemical) réaction f; Typography & Photography procédés mpl photomécaniques; Computing procédé m, opération f, traitement m
    (c) Law procès m, action f en justice; (summons) sommation f de comparaître;
    by due process of law par voies légales
    (d) Biology (outgrowth) processus m
    2 transitive verb ['prəʊses]
    (a) (transform → raw materials) traiter, transformer; (→ cheese, meat, milk) traiter; (→ nuclear waste) retraiter; Computing (data) traiter
    (b) Administration & Commerce (deal with → order, information, cheque) traiter;
    my insurance claim is still being processed ma déclaration de sinistre est toujours en cours de règlement;
    we process thousands of applications every week nous traitons des milliers de demandes chaque semaine;
    your request is being processed votre demande est en cours de traitement
    (c) Law (person) intenter un procès à, poursuivre (en justice)
    (d) Photography développer
    [prə'ses] (march) défiler; Religion défiler en procession;
    the bishops processed slowly down the aisle la procession des évêques avançait lentement dans l'allée centrale
    ►► Photography process camera tireuse f optique;
    Computing & Typography process colours impression f en quadrichromie;
    process engineer ingénieur m en procédés;
    process engineering ingénierie f de procédés;
    process printing impression f en couleurs

    Un panorama unique de l'anglais et du français > process

  • 9 репродукционная фотография

    Большой англо-русский и русско-английский словарь > репродукционная фотография

  • 10 репродукционная фотография

    Англо-русский словарь технических терминов > репродукционная фотография

  • 11 репродукционная фотография

    process-camera photography, reproduction photography

    Русско-английский политехнический словарь > репродукционная фотография

  • 12 репродукционная фотография

    Универсальный русско-английский словарь > репродукционная фотография

  • 13 съёмка на репродукционном фотоаппарате

    Универсальный русско-английский словарь > съёмка на репродукционном фотоаппарате

  • 14 Eastman, George

    [br]
    b. 12 July 1854 Waterville, New York, USA
    d. 14 March 1932 Rochester, New York, USA
    [br]
    American industrialist and pioneer of popular photography.
    [br]
    The young Eastman was a clerk-bookkeeper in the Rochester Savings Bank when in 1877 he took up photography. Taking lessons in the wet-plate process, he became an enthusiastic amateur photographer. However, the cumbersome equipment and noxious chemicals used in the process proved an obstacle, as he said, "It seemed to be that one ought to be able to carry less than a pack-horse load." Then he came across an account of the new gelatine dry-plate process in the British Journal of Photography of March 1878. He experimented in coating glass plates with the new emulsions, and was soon so successful that he decided to go into commercial manufacture. He devised a machine to simplify the coating of the plates, and travelled to England in July 1879 to patent it. In April 1880 he prepared to begin manufacture in a rented building in Rochester, and contacted the leading American photographic supply house, E. \& H.T.Anthony, offering them an option as agents. A local whip manufacturer, Henry A.Strong, invested $1,000 in the enterprise and the Eastman Dry Plate Company was formed on 1 January 1881. Still working at the Savings Bank, he ran the business in his spare time, and demand grew for the quality product he was producing. The fledgling company survived a near disaster in 1882 when the quality of the emulsions dropped alarmingly. Eastman later discovered this was due to impurities in the gelatine used, and this led him to test all raw materials rigorously for quality. In 1884 the company became a corporation, the Eastman Dry Plate \& Film Company, and a new product was announced. Mindful of his desire to simplify photography, Eastman, with a camera maker, William H.Walker, designed a roll-holder in which the heavy glass plates were replaced by a roll of emulsion-coated paper. The holders were made in sizes suitable for most plate cameras. Eastman designed and patented a coating machine for the large-scale production of the paper film, bringing costs down dramatically, the roll-holders were acclaimed by photographers worldwide, and prizes and medals were awarded, but Eastman was still not satisfied. The next step was to incorporate the roll-holder in a smaller, hand-held camera. His first successful design was launched in June 1888: the Kodak camera. A small box camera, it held enough paper film for 100 circular exposures, and was bought ready-loaded. After the film had been exposed, the camera was returned to Eastman's factory, where the film was removed, processed and printed, and the camera reloaded. This developing and printing service was the most revolutionary part of his invention, since at that time photographers were expected to process their own photographs, which required access to a darkroom and appropriate chemicals. The Kodak camera put photography into the hands of the countless thousands who wanted photographs without complications. Eastman's marketing slogan neatly summed up the advantage: "You Press the Button, We Do the Rest." The Kodak camera was the last product in the design of which Eastman was personally involved. His company was growing rapidly, and he recruited the most talented scientists and technicians available. New products emerged regularly—notably the first commercially produced celluloid roll film for the Kodak cameras in July 1889; this material made possible the introduction of cinematography a few years later. Eastman's philosophy of simplifying photography and reducing its costs continued to influence products: for example, the introduction of the one dollar, or five shilling, Brownie camera in 1900, which put photography in the hands of almost everyone. Over the years the Eastman Kodak Company, as it now was, grew into a giant multinational corporation with manufacturing and marketing organizations throughout the world. Eastman continued to guide the company; he pursued an enlightened policy of employee welfare and profit sharing decades before this was common in industry. He made massive donations to many concerns, notably the Massachusetts Institute of Technology, and supported schemes for the education of black people, dental welfare, calendar reform, music and many other causes, he withdrew from the day-to-day control of the company in 1925, and at last had time for recreation. On 14 March 1932, suffering from a painful terminal cancer and after tidying up his affairs, he shot himself through the heart, leaving a note: "To my friends: My work is done. Why wait?" Although Eastman's technical innovations were made mostly at the beginning of his career, the organization which he founded and guided in its formative years was responsible for many of the major advances in photography over the years.
    [br]
    Further Reading
    C.Ackerman, 1929, George Eastman, Cambridge, Mass.
    BC

    Biographical history of technology > Eastman, George

  • 15 Talbot, William Henry Fox

    [br]
    b. 11 February 1800 Melbury, England
    d. 17 September 1877 Lacock, Wiltshire, England
    [br]
    English scientist, inventor of negative—positive photography and practicable photo engraving.
    [br]
    Educated at Harrow, where he first showed an interest in science, and at Cambridge, Talbot was an outstanding scholar and a formidable mathematician. He published over fifty scientific papers and took out twelve English patents. His interests outside the field of science were also wide and included Assyriology, etymology and the classics. He was briefly a Member of Parliament, but did not pursue a parliamentary career.
    Talbot's invention of photography arose out of his frustrating attempts to produce acceptable pencil sketches using popular artist's aids, the camera discura and camera lucida. From his experiments with the former he conceived the idea of placing on the screen a paper coated with silver salts so that the image would be captured chemically. During the spring of 1834 he made outline images of subjects such as leaves and flowers by placing them on sheets of sensitized paper and exposing them to sunlight. No camera was involved and the first images produced using an optical system were made with a solar microscope. It was only when he had devised a more sensitive paper that Talbot was able to make camera pictures; the earliest surviving camera negative dates from August 1835. From the beginning, Talbot noticed that the lights and shades of his images were reversed. During 1834 or 1835 he discovered that by placing this reversed image on another sheet of sensitized paper and again exposing it to sunlight, a picture was produced with lights and shades in the correct disposition. Talbot had discovered the basis of modern photography, the photographic negative, from which could be produced an unlimited number of positives. He did little further work until the announcement of Daguerre's process in 1839 prompted him to publish an account of his negative-positive process. Aware that his photogenic drawing process had many imperfections, Talbot plunged into further experiments and in September 1840, using a mixture incorporating a solution of gallic acid, discovered an invisible latent image that could be made visible by development. This improved calotype process dramatically shortened exposure times and allowed Talbot to take portraits. In 1841 he patented the process, an exercise that was later to cause controversy, and between 1844 and 1846 produced The Pencil of Nature, the world's first commercial photographically illustrated book.
    Concerned that some of his photographs were prone to fading, Talbot later began experiments to combine photography with printing and engraving. Using bichromated gelatine, he devised the first practicable method of photo engraving, which was patented as Photoglyphic engraving in October 1852. He later went on to use screens of gauze, muslin and finely powdered gum to break up the image into lines and dots, thus anticipating modern photomechanical processes.
    Talbot was described by contemporaries as the "Father of Photography" primarily in recognition of his discovery of the negative-positive process, but he also produced the first photomicrographs, took the first high-speed photographs with the aid of a spark from a Leyden jar, and is credited with proposing infra-red photography. He was a shy man and his misguided attempts to enforce his calotype patent made him many enemies. It was perhaps for this reason that he never received the formal recognition from the British nation that his family felt he deserved.
    [br]
    Principal Honours and Distinctions
    FRS March 1831. Royal Society Rumford Medal 1842. Grand Médaille d'Honneur, L'Exposition Universelle, Paris, 1855. Honorary Doctorate of Laws, Edinburgh University, 1863.
    Bibliography
    1839, "Some account of the art of photographic drawing", Royal Society Proceedings 4:120–1; Phil. Mag., XIV, 1839, pp. 19–21.
    8 February 1841, British patent no. 8842 (calotype process).
    1844–6, The Pencil of Nature, 6 parts, London (Talbot'a account of his invention can be found in the introduction; there is a facsimile edn, with an intro. by Beamont Newhall, New York, 1968.
    Further Reading
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London.
    D.B.Thomas, 1964, The First Negatives, London (a lucid concise account of Talbot's photograph work).
    J.Ward and S.Stevenson, 1986, Printed Light, Edinburgh (an essay on Talbot's invention and its reception).
    H.Gernsheim and A.Gernsheim, 1977, The History of Photography, London (a wider picture of Talbot, based primarily on secondary sources).
    JW

    Biographical history of technology > Talbot, William Henry Fox

  • 16 Sutton, Thomas

    [br]
    b. 1819 England
    d. 1875 Jersey, Channel Islands
    [br]
    English photographer and writer on photography.
    [br]
    In 1841, while studying at Cambridge, Sutton became interested in photography and tried out the current processes, daguerreotype, calotype and cyanotype among them. He subsequently settled in Jersey, where he continued his photographic studies. In 1855 he opened a photographic printing works in Jersey, in partnership with L.-D. Blanquart- Evrard, exploiting the latter's process for producing developed positive prints. He started and edited one of the first photographic periodicals, Photographic Notes, in 1856; until its cessation in 1867, his journal presented a fresher view of the world of photography than that given by its London-based rivals. He also drew up the first dictionary of photography in 1858.
    In 1859 Sutton designed and patented a wideangle lens in which the space between two meniscus lenses, forming parts of a sphere and sealed in a metal rim, was filled with water; the lens so formed could cover an angle of up to 120 degrees at an aperture of f12. Sutton's design was inspired by observing the images produced by the water-filled sphere of a "snowstorm" souvenir brought home from Paris! Sutton commissioned the London camera-maker Frederick Cox to make the Panoramic camera, demonstrating the first model in January 1860; it took panoramic pictures on curved glass plates 152×381 mm in size. Cox later advertised other models in a total of four sizes. In January 1861 Sutton handed over manufacture to Andrew Ross's son Thomas Ross, who produced much-improved lenses and also cameras in three sizes. Sutton then developed the first single-lens reflex camera design, patenting it on 20 August 1961: a pivoted mirror, placed at 45 degrees inside the camera, reflected the image from the lens onto a ground glass-screen set in the top of the camera for framing and focusing. When ready, the mirror was swung up out of the way to allow light to reach the plate at the back of the camera. The design was manufactured for a few years by Thomas Ross and J.H. Dallmeyer.
    In 1861 James Clerk Maxwell asked Sutton to prepare a series of photographs for use in his lecture "On the theory of three primary colours", to be presented at the Royal Institution in London on 17 May 1861. Maxwell required three photographs to be taken through red, green and blue filters, which were to be printed as lantern slides and projected in superimposition through three projectors. If his theory was correct, a colour reproduction of the original subject would be produced. Sutton used liquid filters: ammoniacal copper sulphate for blue, copper chloride for the green and iron sulphocyanide for the red. A fourth exposure was made through lemon-yellow glass, but was not used in the final demonstration. A tartan ribbon in a bow was used as the subject; the wet-collodion process in current use required six seconds for the blue exposure, about twice what would have been needed without the filter. After twelve minutes no trace of image was produced through the green filter, which had to be diluted to a pale green: a twelve-minute exposure then produced a serviceable negative. Eight minutes was enough to record an image through the red filter, although since the process was sensitive only to blue light, nothing at all should have been recorded. In 1961, R.M.Evans of the Kodak Research Laboratory showed that the red liquid transmitted ultraviolet radiation, and by an extraordinary coincidence many natural red dye-stuffs reflect ultraviolet. Thus the red separation was made on the basis of non-visible radiation rather than red, but the net result was correct and the projected images did give an identifiable reproduction of the original. Sutton's photographs enabled Maxwell to establish the validity of his theory and to provide the basis upon which all subsequent methods of colour photography have been founded.
    JW / BC

    Biographical history of technology > Sutton, Thomas

  • 17 Daguerre, Louis Jacques Mandé

    [br]
    b. 18 November 1787 Carmeilles-en-Parisis, France
    d. 10 July 1851 Petit-Bry-sur-Marne, France
    [br]
    French inventor of the first practicable photographic process.
    [br]
    The son of a minor official in a magistrate's court, Daguerre showed an early aptitude for drawing. He was first apprenticed to an architect, but in 1804 he moved to Paris to learn the art of stage design. He was particularly interested in perspective and lighting, and later showed great ingenuity in lighting stage sets. Fascinated by a popular form of entertainment of the period, the panorama, he went on to create a variant of it called the diorama. It is assumed that he used a camera obscura for perspective drawings and, by purchasing it from the optician Chevalier, he made contact with Joseph Nicéphore Niepce. In 1829 Niepce and Daguerre entered into a formal partnership to perfect Niepce's heliographic process, but the partnership was dissolved when Niepce died in 1833, when only limited progress had been made. Daguerre continued experimenting alone, however, using iodine and silver plates; by 1837 he had discovered that images formed in the camera obscura could be developed by mercury vapour and fixed with a hot salt solution. After unsuccessfully attempting to sell his process, Daguerre approached F.J.D. Arago, of the Académie des Sciences, who announced the discovery in 1839. Details of Daguerre's work were not published until August of that year when the process was presented free to the world, except England. With considerable business acumen, Daguerre had quietly patented the process through an agent, Miles Berry, in London a few days earlier. He also granted a monopoly to make and sell his camera to a Monsieur Giroux, a stationer by trade who happened to be a relation of Daguerre's wife. The daguerreotype process caused a sensation when announced. Daguerre was granted a pension by a grateful government and honours were showered upon him all over the world. It was a direct positive process on silvered copper plates and, in fact, proved to be a technological dead end. The future was to lie with negative-positive photography devised by Daguerre's British contemporary, W.H.F. Talbot, although Daguerre's was the first practicable photographic process to be announced. It captured the public's imagination and in an improved form was to dominate professional photographic practice for more than a decade.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur 1839. Honorary FRS 1839. Honorary Fellow of the National Academy of Design, New York, 1839. Honorary Fellow of the Vienna Academy 1843. Pour le Mérite, bestowed by Frederick William IV of Prussia, 1843.
    Bibliography
    14 August 1839, British patent no. 8,194 (daguerrotype photographic process).
    The announcement and details of Daguerre's invention were published in both serious and popular English journals. See, for example, 1839 publications of Athenaeum, Literary Gazette, Magazine of Science and Mechanics Magazine.
    Further Reading
    H.Gernsheim and A.Gernsheim, 1956, L.J.M. Daguerre (the standard account of Daguerre's work).
    —1969, The History of Photography, rev. edn, London (a very full account).
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (a very full account).
    JW

    Biographical history of technology > Daguerre, Louis Jacques Mandé

  • 18 Ives, Frederic Eugene

    [br]
    b. 17 February 1856 Litchfield, Connecticut, USA
    d. 27 May 1937 Philadelphia, Pennsylvania, USA
    [br]
    American printer who pioneered the development of photomechanical and colour photographic processes.
    [br]
    Ives trained as a printer in Ithaca, New York, and became official photographer at Cornell University at the age of 18. His research into photomechanical processes led in 1886 to methods of making halftone reproduction of photographs using crossline screens. In 1881 he was the first to make a three-colour print from relief halftone blocks. He made significant contributions to the early development of colour photography, and from 1888 he published and marketed a number of systems for the production of additive colour photographs. He designed a beam-splitting camera in which a single lens exposed three negatives through red, green and blue filters. Black and white transparencies from these negatives were viewed in a device fitted with internal reflectors and filters, which combined the three colour separations into one full-colour image. This device was marketed in 1895 under the name Kromskop; sets of Kromograms were available commercially, and special cameras, or adaptors for conventional cameras, were available for photographers who wished to take their own colour pictures. A Lantern Kromskop was available for the projection of Kromskop pictures. Ives's system enjoyed a few years of commercial success before simpler methods of making colour photographs rendered it obsolete. Ives continued research into colour photography; his later achievements included the design, in 1915, of the Hicro process, in which a simple camera produced sets of separation negatives that could be printed as dyed transparencies in complementary colours and assembled in register on paper to produce colour prints. Later, in 1932, he introduced Polychrome, a simpler, two-colour process in which a bipack of two thin negative plates or films could be exposed in conventional cameras. Ives's interest extended into other fields, notably stereoscopy. He developed a successful parallax stereogram process in 1903, in which a three-dimensional image could be seen directly, without the use of viewing devices. In his lifetime he received many honours, and was a recipient of the Royal Photographic Society's Progress Medal in 1903 for his work in colour photography.
    [br]
    Further Reading
    B.Coe, 1978, Colour Photography: The First Hundred Years, London J.S.Friedman, 1944, History of Colour Photography, Boston. G.Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Ives, Frederic Eugene

  • 19 Muybridge, Eadweard

    [br]
    b. 9 April 1830 Kingston upon Thames, England
    d. 8 May 1904 Kingston upon Thames, England
    [br]
    English photographer and pioneer of sequence photography of movement.
    [br]
    He was born Edward Muggeridge, but later changed his name, taking the Saxon spelling of his first name and altering his surname, first to Muygridge and then to Muybridge. He emigrated to America in 1851, working in New York in bookbinding and selling as a commission agent for the London Printing and Publishing Company. Through contact with a New York daguerreotypist, Silas T.Selleck, he acquired an interest in photography that developed after his move to California in 1855. On a visit to England in 1860 he learned the wet-collodion process from a friend, Arthur Brown, and acquired the best photographic equipment available in London before returning to America. In 1867, under his trade pseudonym "Helios", he set out to record the scenery of the Far West with his mobile dark-room, christened "The Flying Studio".
    His reputation as a photographer of the first rank spread, and he was commissioned to record the survey visit of Major-General Henry W.Halleck to Alaska and also to record the territory through which the Central Pacific Railroad was being constructed. Perhaps because of this latter project, he was approached by the President of the Central Pacific, Leland Stanford, to attempt to photograph a horse trotting at speed. There was a long-standing controversy among racing men as to whether a trotting horse had all four hooves off the ground at any point; Stanford felt that it did, and hoped than an "instantaneous" photograph would settle the matter once and for all. In May 1872 Muybridge photographed the horse "Occident", but without any great success because the current wet-collodion process normally required many seconds, even in a good light, for a good result. In April 1873 he managed to produce some better negatives, in which a recognizable silhouette of the horse showed all four feet above the ground at the same time.
    Soon after, Muybridge left his young wife, Flora, in San Francisco to go with the army sent to put down the revolt of the Modoc Indians. While he was busy photographing the scenery and the combatants, his wife had an affair with a Major Harry Larkyns. On his return, finding his wife pregnant, he had several confrontations with Larkyns, which culminated in his shooting him dead. At his trial for murder, in February 1875, Muybridge was acquitted by the jury on the grounds of justifiable homicide; he left soon after on a long trip to South America.
    He again took up his photographic work when he returned to North America and Stanford asked him to take up the action-photography project once more. Using a new shutter design he had developed while on his trip south, and which would operate in as little as 1/1,000 of a second, he obtained more detailed pictures of "Occident" in July 1877. He then devised a new scheme, which Stanford sponsored at his farm at Palo Alto. A 50 ft (15 m) long shed was constructed, containing twelve cameras side by side, and a white background marked off with vertical, numbered lines was set up. Each camera was fitted with Muybridge's highspeed shutter, which was released by an electromagnetic catch. Thin threads stretched across the track were broken by the horse as it moved along, closing spring electrical contacts which released each shutter in turn. Thus, in about half a second, twelve photographs were obtained that showed all the phases of the movement.
    Although the pictures were still little more than silhouettes, they were very sharp, and sequences published in scientific and photographic journals throughout the world excited considerable attention. By replacing the threads with an electrical commutator device, which allowed the release of the shutters at precise intervals, Muybridge was able to take series of actions by other animals and humans. From 1880 he lectured in America and Europe, projecting his results in motion on the screen with his Zoopraxiscope projector. In August 1883 he received a grant of $40,000 from the University of Pennsylvania to carry on his work there. Using the vastly improved gelatine dry-plate process and new, improved multiple-camera apparatus, during 1884 and 1885 he produced over 100,000 photographs, of which 20,000 were reproduced in Animal Locomotion in 1887. The subjects were animals of all kinds, and human figures, mostly nude, in a wide range of activities. The quality of the photographs was extremely good, and the publication attracted considerable attention and praise.
    Muybridge returned to England in 1894; his last publications were Animals in Motion (1899) and The Human Figure in Motion (1901). His influence on the world of art was enormous, over-turning the conventional representations of action hitherto used by artists. His work in pioneering the use of sequence photography led to the science of chronophotography developed by Marey and others, and stimulated many inventors, notably Thomas Edison to work which led to the introduction of cinematography in the 1890s.
    [br]
    Bibliography
    1887, Animal Locomotion, Philadelphia.
    1893, Descriptive Zoopraxography, Pennsylvania. 1899, Animals in Motion, London.
    Further Reading
    1973, Eadweard Muybridge: The Stanford Years, Stanford.
    G.Hendricks, 1975, Muybridge: The Father of the Motion Picture, New York. R.Haas, 1976, Muybridge: Man in Motion, California.
    BC

    Biographical history of technology > Muybridge, Eadweard

  • 20 Lumière, Auguste

    [br]
    b. 19 October 1862 Besançon, France
    d. 10 April 1954 Lyon, France
    [br]
    French scientist and inventor.
    [br]
    Auguste and his brother Louis Lumière (b. 5 October 1864 Besançon, France; d. 6 June 1948 Bandol, France) developed the photographic plate-making business founded by their father, Charles Antoine Lumière, at Lyons, extending production to roll-film manufacture in 1887. In the summer of 1894 their father brought to the factory a piece of Edison kinetoscope film, and said that they should produce films for the French owners of the new moving-picture machine. To do this, of course, a camera was needed; Louis was chiefly responsible for the design, which used an intermittent claw for driving the film, inspired by a sewing-machine mechanism. The machine was patented on 13 February 1895, and it was shown on 22 March 1895 at the Société d'Encouragement pour l'In-dustrie Nationale in Paris, with a projected film showing workers leaving the Lyons factory. Further demonstrations followed at the Sorbonne, and in Lyons during the Congrès des Sociétés de Photographie in June 1895. The Lumières filmed the delegates returning from an excursion, and showed the film to the Congrès the next day. To bring the Cinématographe, as it was called, to the public, the basement of the Grand Café in the Boulevard des Capuchines in Paris was rented, and on Saturday 28 December 1895 the first regular presentations of projected pictures to a paying public took place. The half-hour shows were an immediate success, and in a few months Lumière Cinématographes were seen throughout the world.
    The other principal area of achievement by the Lumière brothers was colour photography. They took up Lippman's method of interference colour photography, developing special grainless emulsions, and early in 1893 demonstrated their results by lighting them with an arc lamp and projecting them on to a screen. In 1895 they patented a method of subtractive colour photography involving printing the colour separations on bichromated gelatine glue sheets, which were then dyed and assembled in register, on paper for prints or bound between glass for transparencies. Their most successful colour process was based upon the colour-mosaic principle. In 1904 they described a process in which microscopic grains of potato starch, dyed red, green and blue, were scattered on a freshly varnished glass plate. When dried the mosaic was coated with varnish and then with a panchromatic emulsion. The plate was exposed with the mosaic towards the lens, and after reversal processing a colour transparency was produced. The process was launched commercially in 1907 under the name Autochrome; it was the first fully practical single-plate colour process to reach the public, remaining on the market until the 1930s, when it was followed by a film version using the same principle.
    Auguste and Louis received the Progress Medal of the Royal Photographic Society in 1909 for their work in colour photography. Auguste was also much involved in biological science and, having founded the Clinique Auguste Lumière, spent many of his later years working in the physiological laboratory.
    [br]
    Further Reading
    Guy Borgé, 1980, Prestige de la photographie, Nos. 8, 9 and 10, Paris. Brian Coe, 1978, Colour Photography: The First Hundred Years, London ——1981, The History of Movie Photography, London.
    Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. Gert Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Lumière, Auguste

См. также в других словарях:

  • Photography — is the art, science and practice of creating durable images by recording light or other electromagnetic radiation, either electronically by means of an image sensor or chemically by means of a light sensitive material such as photographic… …   Wikipedia

  • Photography and the law — A No Photography sign, commonly placed in properties where the owner objects to or it is illegal to take photographs (though in some jurisdictions, this is not a legal requirement). Photography tends to be protected by the law through copyright… …   Wikipedia

  • photography — I (New American Roget s College Thesaurus) Picture taking Nouns 1. photography, picture taking; aerial, architectural, available light, candid, digital, fashion, fine art, infrared, laser, paper negative, print, product, scenic, still, stereo… …   English dictionary for students

  • photography — [fə täg′rə fē] n. [ PHOTO + GRAPHY] the art or process of producing images of objects upon a photosensitive surface (as film in a camera) by the chemical action of light or other radiant energy …   English World dictionary

  • photography, history of — Introduction       method of recording the image of an object through the action of light, or related radiation, on a light sensitive material. The word, derived from the Greek photos (“light”) and graphein (“to draw”), was first used in the… …   Universalium

  • photography, technology of — Introduction       equipment, techniques, and processes used in the production of photographs.  The most widely used photographic process is the black and white negative–positive system (Figure 1 >). In the camera the lens projects an image of… …   Universalium

  • Camera — For other uses, see Camera (disambiguation). Various cameras A camera is a device that records and stores images. These images may be still photographs or moving images such as videos or movies. The term camera comes from the camera obscura… …   Wikipedia

  • Camera obscura — This article is about an optical device. For other uses, see Camera obscura (disambiguation) …   Wikipedia

  • photography — /feuh tog reuh fee/, n. 1. the process or art of producing images of objects on sensitized surfaces by the chemical action of light or of other forms of radiant energy, as x rays, gamma rays, or cosmic rays. 2. cinematography. [1839; PHOTO +… …   Universalium

  • Photography and photographers of the American Civil War — articleissues citations missing = February 2008 tone = December 2007 synthesis = April 2008The American Civil War (1861 ndash;1865) was the third war in history to be caught on camera. The first two were the Mexican American War (1846 ndash;1848) …   Wikipedia

  • Photography in Denmark — Peter Faber: Ulfeldts Plads (1840), Denmark s oldest photograph on record …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»